цепной висячий мост - vertaling naar frans
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

цепной висячий мост - vertaling naar frans

ПОДВЕСНОЙ МОСТ ЧЕРЕЗ РЕКУ ДУНАЙ, СОЕДИНЯЮЩИЙ ДВЕ ИСТОРИЧЕСКИХ ЧАСТИ БУДАПЕШТА — БУДУ И ПЕШТ
Будапештский цепной мост; Мост Сечени; Цепной мост Сечени; Цепной мост Сеченьи; Мост Сеченьи

цепной висячий мост      
pont suspendu à chaînes
pont en chaînes      
- висячий мост
- цепной мост
висячий мост         
  • Вантовый [[Русский мост]] (Владивосток)
  • Мост [[Акаси-Кайкё]] между о. [[Хонсю]] и о. [[Сикоку]], Япония
  • Бристоля]] (инженер [[Изамбард Кингдом Брюнель]], 1864).
  • Живой корневой мост
  • [[Ороктойский мост]] через реку [[Катунь]], [[Республика Алтай]]
  • Семипалатинский подвесной мост через реку [[Иртыш]]
  • Висячий мост традиционного типа, музей под открытым небом [[Сикоку-мура]], [[Такамацу]], Япония
  • Англией]] и [[Уэльс]]ом.
  • мост [[Цзин Ма]], [[Гонконг]]
МОСТ, В КОТОРОМ ОСНОВНАЯ НЕСУЩАЯ КОНСТРУКЦИЯ ВЫПОЛНЕНА ИЗ ГИБКИХ ЭЛЕМЕНТОВ
Подвесной мост; Висячие мосты; Навесной мост; Верёвочный мост; Веревочный мост
pont suspendu,; ( на канатах ) pont de cordage

Definitie

Мост измерительный

электрический прибор для измерения сопротивлений, ёмкостей, индуктивностей и др. электрических величин; представляет собой измерительную мостовую цепь (См. Мостовая цепь), действие которой основано на методе сравнения измеряемой величины с образцовой мерой. Метод сравнения даёт весьма точные результаты, вследствие чего М. и. получили широкое распространение как в лабораторной, так и в производственной практике.

Схема простейшего М. и. постоянного тока для измерения активных (омических) сопротивлений дана на рис. На входные зажимы A и B (на диагональ питания) подают напряжение (ток) питания, а к выходным зажимам C и D (к измерительной диагонали) подключают нуль-индикатор или измерительный прибор. Регулируя одно или несколько переменных сопротивлений, добиваются равенства потенциалов в точках C и D. Момент его установления определяют по нуль-индикатору, показывающему отсутствие тока в измерительной диагонали (уравновешенный мост).

Для уравновешенного М. и. соотношение сопротивлений плеч выражается равенством R1·R4 = R2·R3 (условие равновесия). Для измерения сопротивления Rx его включают в одно из плеч М. и., например на место R1. При равновесии моста

Точность измерения Rx при этом определяется точностью калиброванных сопротивлений R2, P3, R4, а также чувствительностью нуль-индикатора. Показанный на рис. четырёхплечий одинарный М. и. применяется обычно для измерения электрических сопротивлений R ≥ 1 ом. На результат измерения одинарным М. и. сопротивлений R < 1 ом существенно влияют сопротивления соединительных проводов и контактов, т. к. они становятся соизмеримыми с Rx. Для измерения сопротивлений от 1 мком до 1 ом применяют двойные или многоплечие М. и. Существуют комбинированные одинарно-двойные М. и., позволяющие измерять сопротивления в диапазоне от 1 мком до 1 Мом с погрешностью порядка ± 0,002\%. Иногда, не регулируя сопротивлений, фиксируют результаты измерений прибором (проградуированным в единицах измеряемой величины), включенным в измерительную диагональ (неуравновешенный мост).

Для измерения ёмкости, индуктивности, коэффициента взаимоиндуктивности и др. применяют уравновешенные М. и. переменного тока. Результаты измерений этих величин зависят от частоты питающего мост напряжения, поэтому измерения обычно производят на определённой заданной частоте. Принципиальная схема М. и. переменного тока подобна схеме, приведённой на рис., с той разницей, что каждое плечо моста может содержать индуктивность, ёмкость и сопротивление. Уравновешивание М. и. переменного тока обычно достигается регулировкой не одного, а двух элементов, т. к. равновесие такого М. и. зависит от соотношения полных сопротивлений (импедансов) его плеч, которые при наличии в них ёмкостей и индуктивностей являются комплексными величинами. Значения измеряемых величин определяют из условия равновесия моста.

Наиболее часто в качестве источников переменного тока в М. и. применяют генераторы измерительные (См. Генератор измерительный) звуковой частоты, реже для этой цели используют сеть переменного тока промышленной частоты (50 гц). Нуль-индикатором для М. и. постоянного тока служит магнитоэлектрический гальванометр, а для М. и. переменного тока - вибрационный гальванометр, телефон, электронный индикатор со стрелочным указателем или с электроннолучевой трубкой. Процесс уравновешивания М. и. современных моделей автоматизирован, и результат измерений представляется в виде числа на отсчётном устройстве. Такие приборы называют цифровыми мостами.

Лит.: Городовский А. Ф., Мосты постоянного тока, М. - Л., 1964; Нижний С. М., Мосты переменного тока, М. - Л., 1966; Шкурин Г. П., Справочник по электро- и электронно-измерительным приборам, М., 1972.

Г. П. Шкурин.

Электрическая схема одинарного моста постоянного тока: Е - источник тока; Г - гальванометр (нуль-индикатор); AC, CB, BD, DA - плечи моста; Rx - измеряемое сопротивление; R2, R3, R4 - калиброванные установочные сопротивления.

Wikipedia

Цепной мост (Будапешт)

Цепно́й мост, или мост Се́ченьи (венг. Széchenyi lánchíd) — висячий мост через реку Дунай, соединяющий две исторических части Будапешта — Буду и Пешт. Открыт в 1849 году, став первым постоянным мостом через Дунай. На момент открытия мост считался чудом света (несколько лет спустя его превзошёл по размерам Николаевский цепной мост подобной конструкции). Мост сыграл важную роль в экономической и общественной жизни Венгрии, стал одним из стимулов объединения Буды и Пешта в единый город Будапешт.